Marco Vinicio Guevara Granizo

Address: LAS ABRAS, VIA GUANO KM 3, Riobamba, Ecuador

E-mail: marcobohd@gmail.com Phone: +593 984991498

ORCID: https://orcid.org/0000-0003-2599-3312

Proactive lecturer and researcher with 2+ years of experience teaching courses on undergraduate and postgraduate levels. Author and co-author of several high-impact publications in solar cells optimization, and in the last years in nanomaterials production and applications.

1. Education

2013-2017 University of Calabria, Italy

Ph.D "INFORMATION AND COMMUNICATION ENGINEERING FOR PERVASIVE INTELLIGENT ENVIROMENTS"

Thesis: "Design of back contact solar cells featuring metallization schemes with multiple emitter contact lines based on TCAD numerical simulations"

Tutor: Prof. Felice Crupi

2004-2010 Universidad San Francisco de Quito, Ecuador

Electrical Engineer

Thesis: Magnetic levitation with one degree of freedom

Tutor: Prof. Laurent Sass

2004-1999 Military High School Combatientes de Tapi

2. RECEIVED COURSES

No	COURSE TITLE	INSTITUTION	COUNTRY	HOURS
1	VII INTERNATIONAL CONGRESS APPLICATION, TRANSPORT AND FLUID STORAGE IN INDUSTRIAL PROCESS	ESPOCH	ECUADOR	40
2	IV ICESTEE 2019	ESPOCH	ECUADOR	40
3	USO Y PERSONALIZACIÓN DEL ENTORNO VIRTUAL DE APRENDISAJE	ESPOCH	ECUADOR	40
4	TECNICAS Y ESTRATEGIAS DIDÁCTICAS PARA EL APRENDISAJE EN LA EDUCACIÓN SUPERIOR	ESPOCH	ECUADOR	40

5	CONTROLADORES LÓGICOS PROGRAMABLES	ESPOCH	ECUADOR	40
6	ESTRATEGIAS DE PRODUCCIÓN Y PUBLICACIÓN CIENTÍFICA	ESPOCH/TECNOLÓGICO DE MONTERREY	ECUADOR	40
7	INTRODUCCIÓN A LAS TÉCNICAS CRISTALOGRÁFICAS	ESPOCH	ECUADOR	40
8	NANO-DEVICES FOR LOGIC AND MEMORY APPLICATIONS	UNICAL	ITALIA	40
9	SLOW ELECTROMAGNETIC WAVES	UNICAL	ITALIA	40
10	UNCERTAIN DATA MANAGEMENT: MODELS, TECHNIQUES, ALGORITHMS	UNICAL	ITALIA	40
11	INFORMATION NETWORK ANALYSIS	UNICAL	ITALIA	40

3. <u>LECTURER EXPERIENCE</u>

LECTURER

N°	INSTITUTION	SUBJECTS	FROM	ТО
1	ESCUELA SUPERIOR POLITÉCNICA DE CHIMBORAZO	 ICT PROGRAMATION ADVANCED MATHEMATICS FOR ENGIEERING PHYSICS ELECTRONIC INDUSTRIAL CONTROL 	2018	2020

GIVEN COURSES

N°	COURSE NAME	INSTITURION	FROM	то
1	INTRODUCTION TO SCIENTIFIC RESEARCH	ESPOCH-GIDETER	11/08/2020	24/08/2020
2	LATEX TO ACADEMIC WRITING	ESPOCH	25/02/2019	08/03/2019

4. PUBLICATIONS

No.	TITLE	DOI	YEAR
1	The Liquid Exfoliation of Graphene in Polar Solvents	https://doi.org/10.1016/j.apsusc.2021.149046	2021
2	Dispersion of graphene in ethanol by sonication	https://doi.org/10.1016/j.matpr.2020.06.441	2020
3	The Adsorption of Methylene Blue on Eco-Friendly Reduced Graphene Oxide	https://doi.org/10.3390/nano10040681	2020
4	Toward Large-Scale Production of Oxidized Graphene	https://doi.org/10.3390/nano10020279	2020
5	Plasmon oscillations in two-dimensional arrays of ultranarrow graphene nanoribbons	https://doi.org/10.1103/PhysRevB.100.235422	2019

6	Zeolite-Assisted Shear Exfoliation of Graphite into Few-Layer Graphene	https://doi.org/10.3390/cryst9080377	2019
7	Preparation of Few-Layer Graphene Dispersions from Hydrothermally Expanded Graphite	https://doi.org/10.3390/app9122539	2019
8	Impact of the Emitter Contact Pattern in c-Si BC-BJ Solar Cells by Numerical Simulations	10.1109/RTSI.2018.8548423	2018
9	UNDERSTANDING THE IMPACT OF POINT- CONTACT SCHEME AND SELECTIVE EMITTER IN A C-SI BC-BJ SOLAR CELL BY FULL 3D NUMERICAL SIMULATIONS.	https://doi.org/10.1016/j.solener.2017.07.051	2017
10	DESIGN GUIDELINES FOR A METALLIZATION SCHEME WITH MULTIPLE-EMITTER CONTACT LINES IN BC-BJ SOLAR CELLS.	https://doi.org/10.1007/s10825-016-0898-y	2016
11	NUMERICAL SIMULATION OF BACK CONTACT-BACK JUNCTION SOLAR CELLS WITH EMITTER DOUBLE CONTACT.	10.1049/cp.2015.0178	2015
12	UNDERSTANDING THE OPTIMIZATION OF THE EMITTER COVERAGE IN BC-BJ SOLAR CELLS.	https://doi.org/10.1016/j.egypro.2015.07.022	2015

5. ORAL PRESENTATIONS

No.	TITLE	DATE
1	Solar photovoltaic technology as a smart alternative to replace conventional fossil fuels	2018
2	Design of High-Efficiency GaAs Solar Cells Based on TCAD 2D Numerical Simulations	2018

7. LANGUAGES

- Spanish (Native)
- English (Fluent)Italian (Fluent)